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The dynamics of phase separation is explored using an immiscible 3D lattice-gas 
model. Scaling laws for the growth rate and power spectra S(k) of the growth 
patterns are computed. For small wavenumbers S(k) shows a crossover from k 2 
to k 4 behavior. The theoretical prediction for the asymptotic domain growth 
R ~-t 2/3 is supported by our results. We discuss the possibility to observe an 
intermediate t scaling. We show the influence of hydrodynamic forces in sym- 
metric and asymmetric mixtures by comparing simulations with and without 
momentum conservation. The structure function S(k) is not significantly 
modified by hydrodynamics, but the growth rate changes clearly. As a general 
result, it is shown that, in spite of the unusual thermodynamics of this model, 
many characteristics of the growth dynamics are surprisingly in agreement with 
the classical theoretical and experimental results. 

KEY WORDS: Lattice-gas automata; immiscible fluids; phase separation; 
spinodal decomposition, growth dynamics. 

1. INTRODUCTION 

Different  m e c h a n i s m s  in b ina ry  mix tu res  m a y  lead  to phase  separa t ion .  

T h e y  are  classified a c c o r d i n g  to the n a t u r e  o f  the  ini t ial  des tabi l iz ing  per-  

tu rba t ion .  N u c l e a t i o n  requi res  tha t  the  ampl i t ude  o f  the p e r t u r b a t i o n  
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should be larger than a certain threshold, whereas in spinodal decomposi- 
tion an infinitesimal perturbation of a sufficient wavelength will lead to 
phase separation. I ~' 2p 

Spinodal decomposition has elicited great interest during the past 
decades, in part because the mechanical properties of an alloy depend on 
the dynamics of the phase separation process. Spinodal decomposition may 
also involve only fluids. Examples of fluid-fluid phase separation include 
the liquid-gas phase transition and the separation of two immiscible fluids. 
In this case the effects of hydrodynamics must be taken into account to 
fully characterize the process. 

One way to describe phase separation is via the evolution of an order 
parameter (which may be, for example, the local density or the local con- 
centration of a chemical species), as in the Cahn-Hilliard equation. ~3'4~ An 
efficient numerical method for this equation is the cell-dynamical systems 
methodJ 3~ However, it is difficult to incorporate hydrodynamic effects in 
this approach, although efforts have been made in this direction. ~3' 7.6~ 

An alternative way to account for hydrodynamics is to solve the full 
Navier-Stokes equations in the presence of interfaces. This is possible with 
lattice-gas automata (LGA) or related lattice-Boltzmann methods. These 
methods are based on kinetic fluid models which may undergo spontaneous 
spinodal decomposition. Surface tension arises spontaneously from the 
evolution rules leading to phase separationJ 8~ 

In this paper we apply a Boolean lattice gas to the study of the 
dynamics of phase separation. We use a 3D version ~gp of the 2D immiscible 
lattice gas (ILG).~P~ Note that connectivity properties of domains and thus 
dynamics of phase separation are different in two and three dimensions. 

A characteristic feature of LGA is that, due to the Boolean nature of 
the variables, which cannot account for infinitesimal variations, microscopic 
noise stems directly from the evolution rules. Here, as we are interested in 
averaged quantities, the presence of noise does not perturb the results. 
Besides, as noise is automatically coupled with hydrodynamics, it allows 
simulation of the important role of fluctuations in phase separation. 

Phase separation may alternatively be studied with related Boltzmann 
methods. ~-~3~ In this case noise must be added explicitly. For example 
Chen and Lookman ~3p perturb the interface orientation at each time step. 
It may be interesting to compare the results obtained from these methods 
with Boolean simulations to gain some insight on how noise affects the 
dynamics of phase separation. 

The paper is organized as follows. We first recall the definition of the 
3D ILG model and then present our results from simulations. Section 3.1 
discusses the shape of the power spectrum of the growth patterns. After 
some introductory definitions and remarks on finite-size effects (Sections 
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3.2.1 and 3.2.2), the growth dynamics is studied in Section 3.2.3. In Sec- 
tion 3.3, we study a variant of our model in which momentum conservation 
is broken. Comparison with simulations of the momentum-conserving 
model shows the contribution of hydrodynamic forces to phase separation. 

2. D E F I N I T I O N  OF THE 3D ILG M O D E L  

The 3D ILG model 19~ has been built on top of the now classical 
FCHC lattice gas. t~4) At each time step, pointlike particles hop from site 
to site on a lattice and collide when they meet at a site according to 
predefined rules which conserve mass and momentum. Particle velocities 
{e i}  i=  I...., 24 can take only a finite number of values, corresponding to the 
directions of the lattice. An exclusion principle ensures that no more than 
one particle will have a given velocity at a given site, and thus the 
configuration at one site can be represented as a Boolean vector. 

In the ILG model there are two species of particles, red and blue. The 
Boolean variables r;(x) and bi(x) indicate the presence of a red or blue 
particle with velocity cj at site x. Particles with the same color attract each 
other, whereas particles with different colors repel each other/1~ Because 
the interaction rules of the 3D ILG are somewhat different from the 2D 
model, we recall them briefly below. 

In the first step of the 3D ILG dynamics, colorblind (i.e., classical 
FCHC) collisions are performed. The result is then modified in order to 
create surface tension. To perform this modification, the interface orien- 
tation is first evaluated through the measurement of the color gradient 

f = ~ c/[ pR(X + Ci) -- pB(X + Ci)] (1) 
i 

where PR and PB are the total number of red and blue particles in a given 
site, respectively. We then choose pairs of particles with opposite velocities 
and try to align them parallel to the color gradient. This operation is 
performed only if the modulus of f is greater than a given threshold, that 
is, only on the interface. 

Second, colors are redistributed among velocity states. The selected 
configuration is the one which maximizes the scalar product q. f, where q 
is the color flux after collision 

q :  ~ [ rti(x)--bli(X) ] C i ( 2 )  
i 

where r'i(x) and b'i(x) stand for the output values of r/(x) and b~(x) after 
collision. This choice creates a negative diffusion, resulting for a range of 
parameters in a spontaneous separation of the two fluids. 
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Lastly,  in the p ropaga t i on  step, more  part icles move in the direct ion 
normal  to the interface than  in the tangential  direction. Surface tension 
results 19~ due to an i so t ropy  of  pressure on the interface, as can be seen from 
its mechanical  definition, 

a =  [ p ~ -  p t ( x ) ]  dx (3) 
- - o 0  

where x is the coordina te  normal  to the interface and p,, and  p,  are the 
pressures normal  and tangent ia l  to the interface, respectively. 

3. S I M U L A T I O N S  OF PHASE SEPARATION 

The latt ice is init ialized with a homogeneous  mixture  of  red and blue 
particles,  which separate  spontaneous ly  dur ing the simulat ion.  The maxi-  

Fig. 1. Phase separation after 6301 time steps, for a volume fraction of red equal to 5 %. 
Only interfaces are shown. The red phase is dispersed in the blue phase in the form of small 
droplets. Boundary conditions are periodic. The average density is 12 particles per site. The 
lattice size is 1283 . 
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Table I. Code Speed for the 3D ILG Model 
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Code speed 
Computer ( x 1000 sites per second) 

SPARC II 31 
HP 730 57 
IBM RS 6000-370 109 

mal  lat t ice size tha t  we h a v e  s imula ted  is 1283. T i m e  pe r fo rmances  o f  the  
code  are  s u m m a r i z e d  in Tab le  I. A typical  1283 s imula t ion  on  a H P  730 

w o r k s t a t i o n  takes  a b o u t  4 days  for 10,000 t ime  steps. 

Fig. 2. Spinodal decomposition after 3032 time steps, for a volume fraction of red equal 
to 50%. Only interfaces are shown. Both phases are continuously interconnected. Boundary 
conditions are periodic. The average density is 12 particles per site. The lattice size is 1283 . 
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An important  parameter is the volume fraction of  the red phase, also 
called the red concentration, defined by 

0 = pR (4) 
PR+PB 

Purely blue and red phases correspond respectively to 0 = 0 or  1. Figures 
1 and 2 show phase separation for 0 = 5 % and 50%. For  small volume 
fractions, red particles gather in separated droplets, whereas for concentra-  
tions near 50% both phases are continuously connected; the transition 
from unconnected to connected phases occurs at volume fractions between 
0.2 and 0.35. 

3.1. Power Spectrum of the Color Density Field 

The power spectrum is measured at different times during simulations. 
Its definition is 4 

S ( k ) =  1 ~[O(x)-O]exp(ik.x) 2 (6) 

where 0(x) is the red concentrat ion at site x and 0 is the volume average. 
The system is assumed to be isotropic and a radial average is performed to 
obtain S(k), where k = [k[. The evolution of  the power spectrum S(k) with 
time for a mixture with 0 = 0 . 5  is shown in Fig. 3. As time increases, 
the domains grow and thus the maximum of S(k) moves to the left. The 
distribution becomes more sharply peaked. 

If  we assume that the observed patterns are self-similar in time, then 
S(k) must follow the scaling law 

S(k) = R3(t) F(kR(t)) (7) 

where R(t) is a characteristic size of  the domainsJ  2" 31 We discuss the func- 
tion R(t) in the next section, but in the meantime define the dimensionless 
wavenumber 

q=kR(t) (8) 

4 Some calculations were performed for a different definition, namely 

S ( k ) = l  ~ [ p , _ p a ] e x p [ i k . x ]  -' (5) 

As density is almost constant in the ILG model, ~5~ the above definition is proportional to 
definition (6) by a factor of 4p-'. 
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Fig. 3. Power spectrum of the color field at time steps t =25,  113, and 279. The average 
density is 20 particles per site and the average volume fraction of red is 50 %. The size L of 
the simulation box is 128. As time increases, the domains grow and thus the maximum of S(k) 
moves to the left. The distribution also becomes more sharply peaked. 

Simulations show that the self-similarity assumption is well verified if the 
early stages of phase separation are excluded, as illustrated by Fig. 4 for an 
average volume fraction of red 0 = 0.5 and by Fig. 5 for 0 = 0.05. However, 
if we use open and solid symbols for early and late times respectively, 
a slight drift of F(q) with time is found. This is not very surprising, because 
different physical mechanisms become dominant in the dynamics at dif- 
ferent times. 

The use of logarithmic axes shows the behavior of F(q) at large and 
small q. For small wavelengths (q >> 1 ), F(q) scales as q-4,  at least in first 
approximation. This well-known behavior, called Porod's law, stems from 
the existence of thin, well-defined interfaces on length scales smaller than 
the typical radius of curvature. (16' 3) When q is only slightly greater than 1, 
interfaces at the corresponding scale look entangled. Then next-order terms 
in the development of F(q) become important and a q-6  or higher order 
behavior is observed, as demonstrated by Tomita. ('8) The shoulder separat- 
ing the two scaling laws has been found both in numerical simulations (jg) 
and laboratory experiments (2~ to occur at q "-~ 3. Our own observations are 
in agreement with these results. The arrow located at q = 3 in Fig. 4B 
points to the shoulder. We found that our simulations do not satisfy 
Tomita's sum rule. (~7"18) This could be explained by the fact that the 
asymptotic regime has not yet been reached. 

An interesting crossover in the scaling of the structure function F(q) 
occurs for q-values less than 1. For a volume fraction of red equal to 
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Fig. 4. Check of the scaling law (7) for a volume fraction of red 50 % and an average density 
of 20 particles per site. Natural and logarithmic plots. For q~>l we recover the expected 
Porod law q-4. For q > l the exponent is greater due to the entanglement of interfaces. The 
arrow on the logarithmic plot indicates the location q = 3. 

50% our results support a q4 scaling for 0.3 < q <  1, which turns into q2 
below 0.3. To interpret this, we shall assume that hydrodynamic forces do 
not influence significantly the shape of F(q). This will be checked in 
Section 3.3. Then the theoretical predictions of Yeung ~2') and Furukawa ~-~2) 
for the structure function at small q, which do not take into account hydro- 
dynamics, should apply here. 

The method employed by YeungC2') is the following. From the Cahn- 
Hilliard-Cook evolution equation (including thermal noise) for the order 
parameter, a differential equation for F(q) can be found. Some coefficients 
of this equation depend on time, mainly through R(t), and so F(q) changes 
with time. Yeung evaluates the order of magnitude of the different terms of 
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Fig. 5. Check of the scaling law (7) for a volume fraction of red equal to 5 % and an average 
density of 20 particles per site. Natural and logarithmic plots. For q>> 1 we recover the 
expected Porod law q-4. For q > 1 the next-order term q-6 becomes dominant. The function 
at small q scales as q-' rather than q4. 

the equation that determines F(q). He shows that once the asymptotic limit 
is reached, the definition of  F(q) is dominated by a term linked to the 
choice of  the chemical potential and scaling as q4 at small q. However, in 
earlier stages another term scaling like R-2q 2 due to thermal fluctuations 
may dominate. This term becomes negligible when R(t) is sufficiently large, 
that is, for sufficiently late times. It should be noticed, however, that for 
each R(t) there is a value of  q below which the fluctuation term will no 
longer be negligible. 

As we discuss in Section 3.2.2, in our  simulations the largest value of 
R(t) before finite-size effects become significant is only about  25. Then the 
q4 term will be dominant  over the R-2q 2 term only for q greater than 0.4 

822/81/I-2-13 
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(we are not accounting for the coefficients of these terms, so this evaluation 
is only qualitative). Indeed we find a crossover between the q2 and q4 
behavior at q -  0.3, which is the correct order of magnitude. 

This crossover points out that we have not reached the asymptotic 
regime. Indeed it turns out that most numerical results have been obtained 
for nonasymptotic behaviors. Although Shinozaki and Oono (3) and Koga 
and Kawasaki t19) reported an observation of q4 behavior of F(q) in cell 
dynamical systems simulations, they had no point below q = 0.3, making it 
difficult to conclude to what extent they reached the asymptotic regime. 
In another case, Alexander et al. ~2~ find only a q-' behavior in their 3D 
simulations. However, their results seem to indicate that the asymptotic 
regime has not been reached and that the slope of F(q) at small q keeps 
growing with time. Thus the discrepancy that they find with Yeung's 
prediction is not surprising. 

3.2. Domain Growth  

3.2.1. Choice of a Definit ion for the Characterist ic Domain 
Size. From the power spectrum of the color field, several characteristic 
sizes may be extracted. The simplest one comes from the first moment: 

I S(k) dk 
R( t) = i kS(k)  dk (9) 
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Fig. 6. Comparison of two definitions of the characteristic size R(t), based respectively on 
the first moment of S(k) (crosses) and its maximum (circles). The volume fraction of red is 
5%. The average density is 20 particles per site. The evolution for both quantities is similar. 
No simple power law is evident. 
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Fig. 7. Characteristic size for 643 and 1283 boxes, for a volume fraction of red 0=0.5 .  The 
average density is 20 particles per site. Before time t = 927, both curves merge and finite-size 
effects are thus proved to be negligible. The effective growth is more rapid than t ~/3 because 
of hydrodynamic effects. Our results are compatible with an asymptotic 2/3 exponent. 

Another possible definition is the size corresponding to the maximum of 
the spectrum S(k). In this case we use a parabolic fit of the maximum and 
its nearest neighbors. 

The time evolution of the characteristic size has been measured in 
simulations. Results do not depend significantly on the choice for the 
definition of R(t) (see Fig. 6). However, the definition based on the 
maximum of S(k) gives noisier measurements. Thus in what follows we 
use the first moment  as defined by Eq. (9). 

3.2.2 Finite-Size Effects.  It is also necessary to know when the 
phase separation will become sensitive to the finite size of the box. We have 
compared results of simulations on lattices of different sizes. If the results 
were independent of the size of the lattice, we would expect that they would 
be identical for all lattices of sufficient size. Indeed Fig. 7 shows that for a 
volume fraction of red O = 0.5 the measurements in 643 and 1283 boxes give 
the same characteristic size R(t) until time t ~ 1000. Another method is to 
check, using power spectra, the time up to which the assumption of self- 
similarity is valid. Both methods give similar estimates for the time beyond 
which finite-size effects become sensitive. 

The comparison of independent simulations in Figure 7 also yields an 
estimate of the error in R(t), which is much smaller than the symbols on 
the graph when measurements are based on the first moment of S(k). 

3.2.3. Growth Exponents.  The evolution of the characteristic 
size is related to the nature of the physical phenomena driving the decom- 
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position. It is usual to look for a growth law in the form t ~. Lifshitz and 
Slyozov t23) predicted an exponent 1/3 when the growth is due to evapora- 
tion or condensation on given sections of the interface, with material diffu- 
sion between the interfaces. This mechanism is dominant after a transient 
for systems without hydrodynamics such as binary alloys. The exponent o~ 
does not depend on space dimension. However, the observation of an 
exponent 1/3 at intermediate or late times may also be explained by the 
Brownian motion of droplets and their coalescence, t24) 

For fluid systems, another mechanism described by Siggia (24) becomes 
dominant at intermediate times if both phases are sufficiently connected. 
This will be true in particular for 0 = 50 %. Surface tension effects are then 
balanced by viscous forces. The predicted exponent oc is 1, as may be found 
from a dimensional analysis applied to V(p/p)= vV2v. Indeed, if Rl(t  ) is 
the typical length scale of the domains in this regime (it is assumed that 
there is only one length scale R1), then the dimensional analysis yields that 
R, is proportional to (g/r/)t, where r/is the dynamical viscosity r/= pv/24) 

This regime may be followed by an exponent 2/3 when inertial effects 
become dominant over viscous effects. (~6) We call then R2(t) the typical 
length scale. The dimensional analysis applied to V(p/p)= vVv yields R2(t) 
proportional to ( a/p )1/3 t2/3. 

Figure 7 allows comparison of our results with these different predic- 
tions. Clearly the growth exponent becomes greater than 1/3, which can be 
explained by hydrodynamic interactions. As a result of the size limitation, 
we were not able to fully reach the asymptotic regime of t 2/3 growth. 
However, our results seem to support this asymptotic value for the expo- 
nent. As we will discuss now, it is not obvious that we should observe the 
intermediate-t regime. 

The crossover between the two regimes t and t 2/3 Occurs after a time 
tc proportional to r/3/(pa2), as obtained from Rl(tc)=RE(tc). Then the 
typical size is 

r/2 
Rc ~ - -  (10) 

pa 

Notice that the crossover takes place when the Reynolds number 
R e ~-R2(t)/(vt) (which increases with time in both cases i=  1 or 2) 
becomes of the order of one. 

For a water/air mixture, the scale R c is of the order of 10-2/tm. For 
most other fluid mixtures, it is much larger. That is why the t regime is 
commonly observed in real experiments. However lattice gas models, 
including ours, are usually designed to have small 1/and large tr, in order 
to reach rapidly macroscopic sizes. Thus R c may be too small in our case 
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to al low an observat ion  of  the t regime. Indeed,  for p = 20, we obta in  
a =  0.689 _+ 0.007 (lattice units) from the Laplace  law and v = 0.107 _0.001 
from the decay of  shear  waves. Thus Rc would  be of  the order  of 1! I t  is 
wor th  not icing that  this effect only depends on the values of  the 
parameters ,  and  not  on deeper  proper t ies  of the model ,  such as the 
dynamica l  nature  of  the phase t ransi t ion,  or  the absence of  interact ion 
potential .  

3.3.  H y d r o d y n a m i c  I n f l u e n c e  

In order  to highlight  the influence of  hyd rodynamic  forces in the growth  
dynamics ,  we have performed some s imulat ions  in which m o m e n t u m  
conservat ion is intent ional ly  broken.  F o r  10 % of  collisions, we reverse the 
par t ic le  velocities as on a solid site. 

Fi rs t  we compare  the evolut ion of  the character is t ic  size R ( t )  with and 
wi thout  m o m e n t u m  conservat ion.  F o r  a 50 % mixture,  when m o m e n t u m  is 
not  conserved, we recover an exponent  1/3 (Fig. 8) cor responding  to the 
coalescence mechanism. If  we double  the rate of  velocity reversal, we find 
the same result. 

We performed the same compar i son  for 0 = 5 %  (Fig. 9). The growth  
is s t rongly slowed down,  and we do not  reach the asymptot ic  regime. We 
expect the non-momentum-conserv ing  s imulat ion to converge toward  a t ~/3 
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Fig. 8. Growth of the characteristic size as a function of time (logarithmic plot) for 0 = 0.5. 
Simulations with (crosses) and without (circles and triangles) momentum conservation are 
compared. They were performed with an average density of 12 particles per site. Each result 
corresponds to only one simulation. For comparison, we have drawn a straight line corre- 
sponding to t ~/3 growth. Only the simulations without momentum conservation follow this 
growth law. 
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Fig. 9. Growth of the characteristic size as a function of time (logarithmic plot) for 0 = 0.05. 
Simulations with (crosses) and without (circles) momentum conservation are compared. They 
were performed with an average density of 12 particles per site. The asymptotic regime is 
apparently not reached in either simulation. However, the momentum-conserving dynamics is 
more rapid than t t/3 in the last time steps, as a consequence of hydrodynamic effects. The 
dynamics without momentum conservation is much slower, but we expect it to reach a t t/3 
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Fig. 10. Comparison of the structure function F ( q )  with (open symbols) and without (solid 
symbols) momentum conservation. The volume fraction of red is 50 % and the average density 
is 20 particles per site. No significant difference is introduced by the breaking of momentum 
conservation. 
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behavior at late times. We check that for the latest times that have been 
reached, the growth in the case of a momentum-conserving dynamics is 
more rapid than t ~/3. The difference between the two curves makes clear the 
influence of hydrodynamics on the growth dynamics. We note that Chen 
and Lookman performed a similar comparison with a Boltzmann 
method, (~3) by resetting the average velocity in each site to zero after the 
collision step. They also observed a strong slowing down of the dynamics 
evolving at long times toward a I 1/3 behavior. 

Lastly, Fig. 10 shows the comparison of the structure function F(q) 
with and without momentum conservation for a volume fraction of red 
50%. At first sight, no significant difference is found. This confirms the 
suggestion of Koga and Kawasaki (~9) that F(q) is mostly insensitive to the 
presence of hydrodynamic interactions, and supports the assumption that 
allowed us to use the Yeung theory in Section 3.1. A more thorough study 
of the universality properties of F(q) is, however, beyond the scope of this 
paper. 

4. C O N C L U S I O N  

The dynamics of phase separation has been explored using a 3D 
lattice-gas model for two immiscible fluids. The assumption of domain 
self-similarity in time is well verified. For large wavenumbers, we recover in 
first approximation the expected scaling for the structure function F(q), 
that is, q-4  for q >> 1 and q-~' with y t> 6 for q > 1. For q < 1 it is shown that 
previous numerical results (3"19"j2) are not contradictory and can be 
explained by the fact that the asymptotic regime has not been fully reached. 
This is illustrated in our case by a crossover from q2 to q4 scaling at 
q--- 0.3. 

Even if the asymptotic regime is not fully reached due to finite-size 
limitations, our results support an asymptotic t 2/3 behavior for the growth 
of domains, in agreement with the theoretical prediction. 

We have also intentionally broken momentum conservation in our 
model in order to demonstrate the contribution of hydrodynamic inter- 
actions to the growth dynamics. Without momentum conservation, the 
domain growth js slowed down and we find the expected t 1/3 growth for a 
50 % mixture. 

As a general result, we find that spinodal decomposition in lattice 
gases retains the generic features that have been found from various 
laboratory experiments, theoretical calculations, and numerical simulations 
based on a postulated definition for the free energy. This was not obvious 
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a priori ,  as no Gibbs free energy can be defined for the model employed 
here, and the decomposition results only from the dynamical rules. Naively 
we might have expected that the phase separation characteristics would 
depend strongly on the thermodynamic properties. On the contrary, in the 
absence of the usual thermodynamics, the dynamical constraints intro- 
duced in our lattice gas model are shown to yield the essential features of 
the growth dynamics of phase separation. 
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